The WRKY45-Dependent Signaling Pathway Is Required For Resistance against Striga hermonthica Parasitism.
نویسندگان
چکیده
The root hemiparasite witchweed (Striga spp.) is a devastating agricultural pest that causes losses of up to $1 billion US annually in sub-Saharan Africa. Development of resistant crops is one of the cost-effective ways to address this problem. However, the molecular mechanisms underlying resistance are not well understood. To understand molecular events upon Striga spp. infection, we conducted genome-scale RNA sequencing expression analysis using Striga hermonthica-infected rice (Oryza sativa) roots. We found that transcripts grouped under the Gene Ontology term defense response were significantly enriched in up-regulated differentially expressed genes. In particular, we found that both jasmonic acid (JA) and salicylic acid (SA) pathways were induced, but the induction of the JA pathway preceded that of the SA pathway. Foliar application of JA resulted in higher resistance. The hebiba mutant plants, which lack the JA biosynthesis gene allene oxide cyclase, exhibited severe S. hermonthica susceptibility. The resistant phenotype was recovered by application of JA. By contrast, the SA-deficient NahG rice plants were resistant against S. hermonthica, indicating that endogenous SA is not required for resistance. However, knocking down WRKY45, a regulator of the SA/benzothiadiazole pathway, resulted in enhanced susceptibility. Interestingly, NahG plants induced the JA pathway, which was down-regulated in WRKY45-knockdown plants, linking the resistant and susceptible phenotypes to the JA pathway. Consistently, the susceptibility phenotype in the WRKY45-knockdown plants was recovered by foliar JA application. These results point to a model in which WRKY45 modulates a cross talk in resistance against S. hermonthica by positively regulating both SA/benzothiadiazole and JA pathways.
منابع مشابه
The WRKY45-Dependent Signaling Pathway Is Required For Resistance against Striga hermonthica Parasitism1[OPEN]
The root hemiparasite witchweed (Striga spp.) is a devastating agricultural pest that causes losses of up to $1 billion US annually in sub-Saharan Africa. Development of resistant crops is one of the cost-effective ways to address this problem. However, the molecular mechanisms underlying resistance are not well understood. To understand molecular events upon Striga spp. infection, we conducted...
متن کاملMolecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica
Lotus japonicus genes responsive to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica were isolated by using the suppression subtractive hybridization (SSH) strategy. O. aegyptiaca and S. hermonthica parasitism specifically induced the expression of genes involved in jasmonic acid (JA) biosynthesis and phytoalexin biosynthesis, respectivel...
متن کاملDetermination of levels of Striga germination Stimulants for maize gene bank accessions and elite inbred lines
Parasitism by Striga hermonthica (Del) Benth is a severe constraint in maizeproduction in sub-Saharan Africa. Varying levels of tolerance to Striga attack havebeen identified and exploited in breeding programs of several crops. However, thelevel and stability of the tolerance is generally unacceptable in field-practice. Onlylimited exploration has been undertaken among the farmers’ landraces to...
متن کاملIsolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica
Plants from the genus Desmodium, in particular D. uncinatum, are used on sub-Saharan small-holder farms as intercrops to inhibit parasitism of cereal crops by Striga hermonthica and Striga asiatica via an allelopathic mechanism. The search for Desmodium species which are adapted to more arid conditions, and which show resilience to increased drought stress, previously identified D. intortum, D....
متن کاملEffect of Seed Priming on Early Development of Sorghum (Sorghum bicolor L. Moench) and Striga hermonthica (Del.) Benth
Striga hermonthica is an obligate, root parasite, that limits cereal production in sub-Saharan Africa. Successful control depends on eliminating its seed reserves in soil, thereby preventing parasitism. Two experiments were conducted to evaluate the effects of salinity on germination traits and seedling growth of sorghum (cultivar Wad Ahmed) and S. hermonthica. The experiments were conducted in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 168 3 شماره
صفحات -
تاریخ انتشار 2015